(ISSN:2581-6853; CODEN: GJNRA9; DOI: 10.33002/nr2581.6853) is an international, scientific double blind peer-reviewed open access journal published 3 times a year online by The Grassroots Institute.
Impact Factor: exaly
Open Access—free for readers, with article processing charges (APC) paid by authors or their institutions.
High Visibility: Indexed in the SCOPUS, Web of Science (Zoological Record, Biosis Previews, Biological Abstracts, Biosis Full Coverage Unique, and CAB Abstracts), EBSCO and other databases.
Fast Publication: Provisional acceptance of the submitted article is given in 1 week time. After consent of author(s), manuscript is peer-reviewed and a first decision provided to authors in 2-4 weeks after submission.
Recognition of Reviewers: The reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in the journal, in appreciation of the work done. Reviewers also receive Certificate for their voluntary service.
Coordinated and published by The Grassroots Institute, the Grassroots Journal of Natural Resources (GJNR) is an international journal dedicated to the latest advancements in natural resources throughout the world. The goal of this journal is to provide a platform for scientists, social scientists, policy analysts, managers and practitioners (on all academic and professional levels) all over the world to promote, discuss and share various new issues and developments in different arenas of natural resources.
Pervin Akter*1, Rabeya Begum2
1Department of Botany, University of Chittagong, Chittagong - 4331, Bangladesh
E-mail: pervinakter@cu.ac.bd | ORCID: https://orcid.org/0009-0003-2994-3950
2Department of Botany, University of Chittagong, Chittagong - 4331, Bangladesh
E-mail: rabeyajehan@gmail.com | ORCID: https://orcid.org/0009-0009-3847-6593
*Corresponding author
Grassroots Journal of Natural Resources, 7(1): 1-20. Doi: https://doi.org/10.33002/nr2581.6853.070101
Received: 10 August 2023
Reviewed: 20 February 2024
Provisionally Accepted: 21 February 2024
Revised: 28 February 2024
Finally Accepted: 29 February 2024
Published: 07 March 2024
This study investigates the allelopathic effects of root exudate extracts from Chromolaena odorata on the germination and growth of six crop species. The results reveal variable sensitivity among the species, with the control treatment consistently exhibiting superior germination percentages. Initially, some species, including Abelmoschus esculentus (okra), Solanum lycopersicum (tomato), and Cicer arietinum (chickpea), experienced a substantial decline in germination, indicating a potential inhibitory effect of the exudates, although partial recovery was observed in subsequent treatments. Phaseolus vulgaris (common bean) displayed a moderate decrease, while Zea mays (corn) exhibited the most significant drop in germination rates, albeit with slight recovery at higher concentrations of exudates. Conversely, Cucumis sativus (cucumber) appeared least affected by the exudates. Moreover, all species demonstrated reductions in shoot and root lengths with increasing concentrations of exudates. Chlorophyll content analysis revealed a significant reduction across most treatments, highlighting concerns regarding photosynthetic efficiency and overall plant health. The species-specific response to root exudates suggests varying metabolic or adaptive mechanisms among crops. Additionally, malondialdehyde (MDA) levels, indicative of oxidative stress, varied among species, with A. esculentus and P. vulgaris showing a dose-dependent increase, while S. lycopersicum displayed a peak at intermediate treatment levels. Z. mays exhibited marginal elevation in MDA content, potentially indicating the presence of protective compounds within the exudates. Conversely, C. arietinum and C. sativus showed a steady increase in MDA, suggesting limited mitigation of allelopathic effects. These findings feature the complexity of allelopathic interactions and highlight the need for further research into active compounds and their modes of action to develop sustainable weed management strategies while safeguarding crop health. Understanding these dynamics is crucial for maximizing the potential benefits of allelopathy in agriculture.
Allelopathy; Root exudates; Chromolaena odorata; Crop plants; Seed germination; Chlorophyll content; MDA content
Aazami, M.A., Rasouli, F. and Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant
Akter, P., Ahmed, A.M.A., Promie, F.K. and Haque, M.E. (2023). Root Exudates of Fifteen
Alsherif, E.A., Hegazy, A.K., Gomaa, N.H. and Hassan, M.O. (2013). Allelopathic effect of
black mustard tissues and root exudates on some crops and weeds. Planta Daninha, 31(1): 11–19. DOI: https://doi.org/10.1590/s0100-83582013000100002.
Álvarez, Y.V., Otero, P., Del Mar Muñoz Prieto, M., Simal-Gándara, J., Reigosa, M.,
Sánchez‐Moreiras, A. and Hussain, M.I. (2023). Testing the role of allelochemicals in different wheat cultivars to sustainably manage weeds. Pest Management Science, 79(7): 2625–2638. DOI: https://doi.org/10.1002/ps.7444.
Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R.M. and Vivanco, J.M. (2003). Allelopathy
Bakhshayeshan-Agdam, H. and Salehi-Lisar, S.Y. (2020). Agronomic crops response and
Beck, A.E., Kleiner, M. and Garrell, A. (2022). Elucidating Plant-Microbe-Environment
interactions through OMICS-Enabled metabolic modelling using synthetic communities. Frontiers in Plant Science, 13. DOI: https://doi.org/10.3389/fpls.2022.910377.
Bertin, C., Yang, X. and Weston, L.A. (2003). The role of root exudates and allelochemicals in
the rhizosphere. Plant Soil, 256(1): 67–83. DOI: https://doi.org/10.1023/a:1026290508166.
Brown, P.D. and Morra, M.J. (1996). Hydrolysis Products of Glucosinolates in Brassica Napus
Channappagoudar, B. and Agasimani, C. (2003). Physiological studies on weed control
Chauhan, B.S., Matloob, A., Mahajan, G., Aslam, F., Florentine, S.K. and Jha, P. (2017).
Cheng, Z. and Peng, X. (2013). Lily (Lilium spp.) root exudates exhibit different allelopathies on
Deepak, H. and Virk, V. (2022). Optimization of surface sterilization method for the isolation of
El-Halmouch, Y., Benharrat, H. and Thalouarn, P. (2006). Effect of root exudates from different
Em, D. (2017). Growth response of seedlings of Zea mays (L.) to aqueous extract of Lycopodium
Fen Y.J., Tao P. and Pang M.H. (2009). Study on allelopathic substances releasing mode of
Flaveria bidents. J. Hebei Agric. Univ., 32: 72–77. DOI: https://doi.org/1000-1573(2009)01-0072-06.
Guangdong, G., Zhang, S., and Cheng, Z. (2009). Allelopathy and allelochemicals of root
exudates in hot pepper. Acta Horticulturae Sinica, 36(6): 873–878. DOI: https://www.cabdirect.org/cabdirect/abstract/20103058145.
Guo, X., Li, K., Sun, Y., Zhang, L., Hu, X. and Xie, H. (2010). Allelopathic effects and
identification of allelochemicals in grape root exudates. Acta Horticulturae Sinica, 37(6): 861–868. Available online at: https://en.cnki.com.cn/Article_en/CJFDTOTAL-YYXB201006002.htm (accessed on 01 March 2024).
Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hörtensteiner S,
Hasanuzzaman, M., Nahar, K. and Fujit, M. (2013) Extreme Temperature Responses, Oxidative
Stress and Antioxidant Defense in Plants. In: Kourosh Vahdati and Charles Leslie (eds.) Abiotic Stress - Plant Responses and Applications in Agriculture. InTech Open Books. DOI: http://dx.doi.org/10.5772/54833.
Hickman, D.T., Rasmussen, A., Ritz, K., Birkett, M.A. and Neve, P. (2020). Review:
Högberg, J., Larson, R.E., Kristoferson, A. and Orrenius, S. (1974). NADPH-dependent
reductase solubilized from microsomes by peroxidation and its activity. Biochemical and Biophysical Research Communications, 56(3): 836–842. DOI: https://doi.org/10.1016/0006-291x(74)90681-0.
Huang, Y., Ge, Y., Wang, Q., Zhou, H., Liu, W. and Christie, P. (2017). Allelopathic Effects of
Aqueous Extracts of Alternanthera philoxeroides on the Growth of Zoysia matrella. Polish Journal of Environmental Studies, 26(1): 97-105. DOI: https://doi.org/10.15244/pjoes/65039.
Iman, A., Wahab, S., Rastan, M. and Halim, M. (2006). Allelopathic effect of sweet corn and
Jaballah, S.B., Zribi, I. and Haouala, R. (2017). Physiological and biochemical responses of two
Kanissery, R., Gairhe, B, Kadyampakeni, D., Batuman, O. and Alferez, F. (2019). Glyphosate:
Khamare, Y., Chen, J. and Marble, C. (2022). Allelopathy and its application as a weed
Khanh, T.D., Linh, L., Linh, T.H., Quan, N.T., Cường, Đ.M., Hien, L.H. V. and Xuan, T.D.
Kostina-Bednarz, M., Płonka, J., and Barchańska, H. (2023). Allelopathy as a source of
Kraehmer, H., Laber, B., Rosinger, C., and Schulz, A. (2014). Herbicides as weed control agents:
Krumsri R., Kato-Noguchi H. and Poonpaiboonpipat, T. (2020). Allelopathic effect of
Kuai, B., Chen, J. and Hörtensteiner, S. (2017). The biochemistry and molecular biology of
Kubiak, A., Wolna-Maruwka, A., Niewiadomska, A. and Pilarska, A.A. (2022). The Problem of
Kunz, C., Sturm, D.J., Varnholt, D., Walker, F. and Gerhards, R. (2016). Allelopathic effects and
Lei, F.J., Zhang, A.H., Fang, S.W. and Zhang, L.X. (2010). Allelopathic effects of ginseng root
Li, J.H., Hou, L.F. and He, X.L. (2014). Chemical composition and biological activity of
Lichtenthaler, H.K. and Wellburn, A.R. (1983). Determinations of total carotenoids and
Liu, J., Chang, Y., Sun, L., Du, F., Cui, J., Liu, X., Li, N., Wang, W., Li, J. and Yao, D. (2021).
Lou, Y., Davis, A.S. and Yannarell, A.C. (2015).. Interactions between allelochemicals and the
Mason-Sedun, W., Jessop, R.S. and Lovett, J.V. (1986). Differential Phytotoxicity among
Motmainna, M., Juraimi, A.S., Ahmad-Hamdani, M.S., Hasan, M., Yeasmin, S., Anwar, M.P.
Ofosu, R., Agyemang, E.D., Márton, A., Pásztor, G., Taller, J. and Kazinczi, G. (2023).
Herbicide Resistance: Managing Weeds in a Changing World. Agronomy, 13(6): 1595. DOI: https://doi.org/10.3390/agronomy13061595.
Oleszk, W. (1987). Allelopathic effects of volatiles from some Cruciferae species on lettuce,
Poonpaiboonpipat, T., Krumsri, R. and Kato-Noguchi, H. (2021). Allelopathic and Herbicidal
Raza, A., Salehi, H., Rahman, A., Zahid, Z., Haghjou, M.M., Najafi-Kakavand, S., Charagh, S.,
Osman, H.S., Albaqami, M., Zhuang, Y., Siddique, K.H. and Zhuang, W. (2022). Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Frontiers in Plant Science, 13. DOI: https://doi.org/10.3389/fpls.2022.961872.
Raza, T., Khan, M.Y., Nadeem, S., Imran, S., Qureshi, K.N., Mushtaq, M., Sohaib, M.,
Schmalenberger, A. and Eash, N.S. (2021). Biological management of selected weeds of wheat through co-application of allelopathic rhizobacteria and sorghum extract. Biological Control, 164: 104775. DOI: https://doi.org/10.1016/j.biocontrol.2021.104775.
Reigosa, M.J., Pedrol, N. and González, L.M. (2006). Allelopathy : a physiological process with
Sahid, I. and Yusoff, N.M.R.N. (2014). Allelopathic effects of “Chromolaena odorata” (L.) King
Saleh, A.M. and Madany, M.M.Y. (2013). Investigation of the Allelopathic Potential of Alhagi
graecorum Boiss. Asian Journal of Agricultural Research, 8(1): 42–50. DOI: https://doi.org/10.3923/ajar.2014.42.50.
Sarker, U. and Oba, S. (2020). The Response of Salinity Stress-Induced A. tricolor to Growth,
Scavo, A. and Mauromicale, G. (2021). Crop Allelopathy for Sustainable Weed Management in
Agroecosystems: Knowing the Present with a View to the Future. Agronomy, 11(11):2104. https://doi.org/10.3390/agronomy11112104.
Schütte, G., Eckerstorfer, M., Rastelli, V., Reichenbecher, W., Restrepo-Vassalli, S., Ruohonen-
Se, I., Se, I. and Se, I. (2023). Allelopathic effect of chromolaena odorata foliage as soil
Shabala, S. (2010). Physiological and cellular aspects of phytotoxicity tolerance in plants: the
Shaolin, P., Wen, J. and Qin-Feng, G. (2004). Mechanism and active variety of allelochemicals.
Silva, R.F., Rabeschini, G.B., Peinado, G.L., Cosmo, L.G., Rezende, L.H., Murayama, R.K. and
Pareja, M. (2018). The ecology of plant chemistry and multi-species interactions in diversified agroecosystems. Frontiers in plant science, 9: 1713.
Singh, A., Rajeswari, G., Nirmal, L. and Jacob, S. (2021). Synthesis and extraction routes of
Sisodia S. and Siddiqui M.B. (2010). Allelopathic effect by aqueous extracts of different parts of
Storkey, J., Mead, A., Addy, J. and MacDonald, A.J. (2021). Agricultural intensification and
Sun, C., Li, Q., Han, L., Chen, X. and Zhang, F. (2022) The effects of allelo-chemicals from root
exudates of Flaveria bidentis on two Bacillus sp. Front. Plant Sci., 13: 1001208. DOI: https://doi.org/10.3389/fpls.
Taïbi, K., Taïbi, F., Abderrahim, L.A., Ennajah, A., Belkhodja, M. and Mulet, J. (2016). Effect
Tokarz, B., Wójtowicz, T., Makowski, W., Jędrzejczyk, R.J. and Tokarz, K.M. (2020). What is
Woyessa, D. (2022). Weed control methods used in agriculture. American Journal of Life
Xu, G., Shan, S., Zhang, Y., Cléments, D.R., Yang, Y., Yang, S., Feng-Ping, Z., Gui-Mei, J.,
Xuan, T.D., Shinkichi, T., Hong, N.H., Khanh, T.D. and Min, C.I.(2004). Assessment of
phytotoxic action of Ageratum conyzoides L. (billy goat weed) on weeds. Crop Prot., 23: 915–922. DOI: https://doi.org/10.1016/j.cropro.2004.02.005.
Yang, D., Chen, Y., Wang, R., He, Y., Ma, X., Shen, J., He, Z. and Lai, H. (2024). Effects of
Yasumoto, S., Suzuki, K., Matsuzaki, M., Hiradate, S., Oose, K., Hirokane, H. and Okada, K.
(2011). Effects of Plant Residue, Root Exudate and Juvenile Plants of Rapeseed (Brassica napus L.) on the Germination, Growth, Yield, and Quality of Subsequent Crops in Successive and Rotational Cropping Systems. Plant Production Science, 14(4): 339–348. DOI: https://doi.org/10.1626/pps.14.339.
Zhang, F.J., Guo, J.Y., Li, W.X. and Wan, F.H. (2012). Influence of coastal plain yellow tops
Zhang, X, Yan, J. and Wu, F. (2022). Response of Cucumis sativus to Neighbors in a Species-
Zhang, L. (2008). Allelopathy of lily root exudates on some receiver ornamental plants. Journal
Zhao, Y., Han, Q., Ding, C., Huang, Y., Liao, J., Chen, T., Feng, S., Zhou, L., Zhang, Z., Chen,
Y., Yuan, S., and Yuan, M. (2020). Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. International Journal of Molecular Sciences, 21(4): 1390. DOI: https://doi.org/10.3390/ijms21041390.
Akter, P. and Begum, R. (2024). Allelopathic Responses of Crop Species to Chromolaena odorata Root Exudate Extracts: A Comprehensive Study. Grassroots Journal of Natural Resources, 7(1): 1-20. Doi: https://doi.org/10.33002/nr2581.6853.070101
Akter, P., & Begum, R. (2024). Allelopathic Responses of Crop Species to Chromolaena odorata Root Exudate Extracts: A Comprehensive Study. Grassroots Journal of Natural Resources, 7(1), 1-20. https://doi.org/10.33002/nr2581.6853.070101
Akter P., Begum R. Allelopathic Responses of Crop Species to Chromolaena odorata Root Exudate Extracts: A Comprehensive Study. Grassroots Journal of Natural Resources, 2024, 7 (1), 1-20. https://doi.org/10.33002/nr2581.6853.070101
Akter, Pervin, Begum, Rabeya. 2024. “Allelopathic Responses of Crop Species to Chromolaena odorata Root Exudate Extracts: A Comprehensive Study”. Grassroots Journal of Natural Resources, 7 no. 1: 1-20. https://doi.org/10.33002/nr2581.6853.070101
Akter, Pervin and Rabeya Begum. 2024. “Allelopathic Responses of Crop Species to Chromolaena odorata Root Exudate Extracts: A Comprehensive Study”. Grassroots Journal of Natural Resources, 7 (1): 1-20. https://doi.org/10.33002/nr2581.6853.070101
Crossref: | https://doi.org/10.33002/nr2581.6853.070101 |
EuroPub: | https://europub.co.uk/articles/736219 |
Scilit: | https://www.scilit.net/publications/a50723ab4dbcc248b6cd0cf20088661e |
Publons: | |
SSRN: | |
Cite Factor: | https://shorturl.at/CeYvn |
Academia.edu: | https://shorturl.at/qkOkb |
Dimensions: | https://shorturl.at/YgGvb |
ZENODO: | https://zenodo.org/records/11440509 |
OpenAIRE: | https://explore.openaire.eu/search/dataset?pid=10.33002%2Fnr2581.6853.070101 |
Scribd: | https://www.scribd.com/document/738754990/nr-07-01-01-akter-begum-m00373 |
ScienceGate: | |
J-Gate: | |
Research Gate: | https://shorturl.at/gP3uQ |
Google Scholar: | |
Harvard Dataverse: | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2F2OXKU8&version=DRAFT |
FAO-AGRIS: |
Internet Archive: | https://archive.org/details/nr-07-01-01-akter-begum-m00373 |
WorldCat: | https://search.worldcat.org/title/10172396254?oclcNum=10172396254 |
© 2024 by the author(s). Licensee Grassroots Journal of Natural Resources. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). We allow to freely share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially) with a legal code: https://creativecommons.org/licenses/by/4.0/legalcode.
Grassroots Journal of Natural Resources by The Grassroots Institute is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at www.grassrootsjournals.org.
* Prof. Dr. Hans-Peter Nachtnebel (Austria)
* Prof. Dr. Sándor Kerekes (Hungary)
* Prof. Dr. Hafiz Muminjanov (Italy/Tajikistan)
* Prof. Dr. Uygun Aksoy (Turkey)
* Prof. Dr. Ahmad Mahdavi (Iran)
* Dr. Walter Fernandez (India)
* Prof. Dr. Gordana Đurić (Bosnia i Herzegovina)
* Prof. Dr. Ermek Baibagyshov (Kyrgyz Repbulic)
* Dr. Hasrat Arjjumend (Canada)
* Dr. Usongo Patience Abaufei (Cameroon)
* Ms. Areej Sabir (Pakistan)
* Dr. Jason MacLean (Canada)
* Dr. Yuliya Rashchupkina (Canada)
* Dr. Richard leBrasseur (Canada)
* Prof. Dr. Bartha Dénes, DSc (Hungary)
* Dr. Kollányi László (Hungary)
* Dr. Krisztián Katona (Hungary)
* Dr. Marcos Frommel (Uruguay/Argentina)
* Dr. Olena Khrushch (Ukraine)
* Dr. Evgeniya Kopitsa (Ukraine)
* Dr. Anastasiia Zymaroieva (Ukraine)
* Dr. Alla Pecheniuk (Ukraine)
* Dr. Buryk Zoriana (Ukraine)
* Dr. Marius Warg Næss (Norway)
* Dr. Stefano Duglio (Italy)
* Prof. Dr. Maria-Mihaela Antofie (Romania)
* Prof. habil. Dr. Cristiana Radulescu (Romania)
* Dr. Ioana-Daniela Dulama (Romania)
* Dr. Mihaela Stet (Romania)
* Dr. Radoslaw J. Walkowiak (Poland)
* Dr. Wenresti G. Gallardo (Oman)
* Dr. Omprakash Madguni (India)
* Dr. Y. Vasudeva Rao (India)
* Prof. Dr. Sanjay-Swami (India)
* Prof. Dr. Yiching Song (China)
* Prof. Dr. Md. Sirajul Islam (Bangladesh)
* Prof. Dr. Syed Hafizur Rahman (Bangladesh)
* Prof. Dr. Md. Mujibor Rahman (Bangladesh)
* Dr. Shahidul Islam (Bangladesh)
* Dr. Dragojla Golub (Bosnia & Herzegovina)
* Dr. Vesna Rajčević (Bosnia & Herzegovina)
* Dr. Muhamed Katica (Bosnia & Herzegovina)
* Dr. Grujica Vico (Bosnia & Herzegovina)
* Dr. Vesna Tunguz (Bosnia & Herzegovina)
* Prof. Dr. Branka Ljevnaić-Mašić (Serbia)
* Dr. Nikola Boskovic (Serbia)
* Prof. Dr. Afrim Selimaj (Kosovo)
* Prof. Dr. Prasanthi Gunawardena (Sri Lanka)
* Dr. Nishan Sakalasooriya (Sri Lanka)
* Dr. T. Mathiventhan (Sri Lanka)
* Dr. Mokbul Morshed Ahmad (Thailand)
* Dr. Juan M. Pulhin (Philippines)
* Prof. Dr. Rose Jane J. Peras (Philippines)
* Dr. Hildie Maria E. Nacorda (Philippines)
* Izr. Prof. Dr. Matej Ogrin (Slovenia)
* Dr. Zornitsa Stoyanova (Bulgaria)
* Dr. Anna Karova (Bulgaria)
* Dr. Ing. K. Berchová Bímová (Czech Republic)
* Dr. Fauziah Shahul Hamid (Malaysia)
* Prof. Dr. Sampson Umenne (Namibia)
* Dr. M. Surabuddin Mondal (Ethiopia)
* Dr. Firuza Begham Mustafa (Malaysia)
* Prof. Dr. Waleed M.R. Hamza (UAE)
* Dr. Moetaz El Sergany (UAE)
* Dr. Nurzat Totubaeva (Kyrgyz Republic)
* Dr. Eldiiar Duulatov (Kyrgyzstan Republic)
* Dr. Mohinder Slariya (India)
* Dr. Hongfen Zhu (China)
Go to Top